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I. INTRODUCTION

Many physical systems obey evolution equations of the
form �1�

dx

dt
= v�x� + F�t� �1�

Here x= �x1 , . . . ,xn� is the state vector; v= �v1 , . . . ,vn� ac-
counts for the “deterministic” part of the evolution, respon-
sible for the eventual tendency of x toward an invariant set of
phase space referred to as attractor; and F= �F1 , . . . ,Fn� is a
set of random �Langevin� forces accounting for the effect of
microscopic level processes, manifested in the form of ther-
modynamic fluctuations around the deterministic path.

When the system operates in the linear range of irrevers-
ible processes and the deterministic part of the evolution is
not subjected to externally imposed systematic nonequilib-
rium constraints the above evolution equations take, in the
absence of inertial effects, the universal form �2�

dx

dt
= − L ·

�U

�x
+ F�t� , �2�

where U is one of the equilibrium thermodynamic potentials
such as the Helmholtz or Gibbs free energy, and L is a sym-
metric positive definite n�n matrix referred to as the On-
sager matrix or the matrix of phenomenological coefficients.
It is to be noted that the time derivative of x in the left-hand
side of Eq. �2� can be viewed as a set of fluxes associated
with the various irreversible processes present, −�U /�x be-
ing the set of corresponding thermodynamic forces.

The best known example of Eq. �1� pertains to the limit
where the random forces are discarded �mean field descrip-
tion� and the evolution laws are linearized around a unique
stable state of thermodynamic equilibrium. As beautifully es-
tablished in De Groot and Mazur’s classic monograph �3�,
there exists then a linear transformation of the variables x
mapping the �x-independent� Hessian matrix of U into the
unit matrix, under which the evolution takes the form

dx�

dt
= − L� · x�, �3a�

where L� is a positive definite symmetric matrix. As a corol-
lary, the evolution of the transformed variables x� can be
written in a variational form,

dx�

dt
= −

��

�x�
, �3b�

where the potential � is given by

� =
1

2�
ij

Lij�xi�xj�. �3c�

The question of whether systems out of equilibrium be-
yond the aforementioned limiting case can still give rise to
variational properties has attracted considerable attention in
the literature. A number of results have been reported, two
familiar forms of which are Onsager’s and Prigogine’s ex-
tremal properties of the entropy production at the steady state
in terms of the fluxes and the forces, respectively �3�. Still,
the extent to which the evolution equations themselves
�rather than the final state to which they drive the system�
derive from a potential function in the sense of Eq. �3b�
remains open. As a matter of fact, in the most general case of
a nonlinear system subjected to arbitrary nonequilibrium
constraints, it is believed that such a property fails, at least at
the level of a mean field description �4�.

In the present work, conditions are identified under which
an affirmative answer to this question can be found. The crux
is to focus on Eq. �2� where L is still a positive symmetric
matrix, U is now allowed to keep its full nonlinear depen-
dence on x, and the random forces satisfy a fluctuation-
dissipation type of relationship. There exists, then, a suitable
set of variables �zi� related to �xi� by a linear transformation,
under which the evolution equations take the form

dzi

dt
= −

��

�zi
+ Ri�t� , �4�

where ���zi�� is a kinetic potential �not to be confused with
the thermodynamic potential U in Eq. �2�� and the Langevin
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forces Ri�t� are related to the set of �Fi�t�� in Eq. �1� by the
aforementioned linear transformation. The general formula-
tion is presented in Sec. II. It is applied successively, in Secs.
III and IV, to phase-transition-, nucleation-, and chemical-
reaction-related problems. The case where the fluctuation-
dissipation property is not satisfied is also considered. The
main conclusions are summarized in Sec. V.

II. VARIATIONAL FORM OF EVOLUTION LAWS:
FORMULATION

Our starting point is Eq. �2� under the additional assump-
tion that the random forces F define a multivariate white
noise process,

�Fi�t�Fj�t��	 = 2Dij��t − t�� , �5�

it being understood that Dij are state and time independent
�additive noise�.

As is well known, under these conditions the stochastic
variable x undergoes a diffusion process whose probability
density P satisfies the Fokker-Planck equation �5�

�P

�t
= �

i=1

n
�

�xi

�

j=1

n

Lij
�U

�xj
P + �

j=1

n

Dij
�P

�xj
� . �6�

We next place ourselves under the conditions of validity of
the fluctuation-dissipation theorem, entailing that the diffu-
sion matrix D and the Onsager matrix L are proportional.
Equation �6� takes then the simplified form

�P

�t
= �

i,j=1

n
�

�xi
Lij
 �U

�xj
P + �

�P

�xj
� , �7�

where � is a small parameter related, depending on the case,
to the thermal energy kT or to the inverse of the system size.
As a by-product, one obtains from this relation, as expected,
that the invariant probability density is of the form

Ps � exp
−
U

�
� , �8�

in agreement with equilibrium statistical mechanics.
To extract information concerning the time-dependent

properties from Eq. �7� we introduce a linear transformation
of variables,

x = A · z , �9a�

�

�x
= Ã−1 ·

�

�z
, �9b�

Ã being the transpose of matrix A, and set

U„x�z�… = ��z� , �9c�

P„x�z�… = ��z� . �9d�

Substituting into the equation we obtain, after some straight-
forward manipulations,

��

�t
= 
Ã−1 ·

�

�z
� · L · �
Ã−1��

�z
� + �Ã−1��

�z
���

or, in more explicit form,

��

�t
= �

jm

�A−1LÃ−1� jm
 �

�zj

��

�zm
� + �

�2�

�zj � zm
� . �10�

Equation �10� features the matrix

� = A−1LÃ−1, �11�

linked to L by a congruent transformation. As is well known,
under such a transformation a symmetric matrix can be di-
agonalized and can actually, upon a further linear scaling, be
reduced to the unit matrix. This requirement determines fully
the transformation matrix A and, upon substituting into Eq.
�10�, one obtains

��

�t
= �

j=1

n
�

�zj

 ��

�zj
� + �

��

�zj
� . �12�

This is the standard form of the Fokker-Planck equation of a
system whose deterministic part of the evolution is driven by
a kinetic potential � and which is subjected to additive fluc-
tuations of identical variance. A system of this kind under-
goes a process of isotropic diffusion in phase space described
by the Langevin equation �see also Eq. �4��

dzi

dt
= −

��

�zi
+ Ri�t� , �13a�

where the random forces satisfy the properties

�Ri�t�	 = 0, �Ri�t�Rj�t��	 = ��ij
kr��t − t�� . �13b�

As a corollary the mean values �zi	 evolve according to

d�zi	
dt

= − � ��

�zi
� �13c�

and the invariant probability density is given by

�s�z� � exp
−
��z�

�
� . �13d�

Equations �13� constitute the main result of this section,
namely, the possibility of casting the evolution equations of a
multivariate system in a form deriving from a kinetic poten-
tial under the assumption of detailed balance. They general-
ize the De Groot–Mazur formulation �Eqs. �3�� in two re-
spects. First, nonlinear terms in the deviation from the
reference state are retained. Such terms are indispensable in,
among others, nucleation- and phase-transition-related prob-
lems, where the thermodynamic potential U possesses more
than one minimum. Second, the presence of fluctuations is
accounted for. Fluctuation-driven effects are crucial when
transitions between states are taking place, as is the case in
nucleation or more generally in systems giving rise to mul-
tiple states. It should be pointed out that the conjunction of
fluctuations and nonlinearities implies that �contrary to Eqs.
�3a�� Eqs. �13c� are not closed with respect to �zj	, but in-
volve higher moments of the probability density as well. It is
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only when the mean field approximation can be justified that
these latter equations reduce to a closed set of deterministic
evolution laws. Otherwise one needs to resort to the full Eqs.
�13a�.

We close this section by some comments on the case
where the fluctuation-dissipation theorem does not hold.
There are two broadly different mechanisms at the origin of
such a failure: the evolution vector v in Eq. �1� contains an
additional contribution beyond the one involving the thermo-
dynamic potential; and/or the diffusion matrix Dij reflects the
fact that a subsystem that would otherwise be driven by the
first term in Eq. �2� is embedded in a nonequilibrium me-
dium. Focusing for concreteness on this second case, we
have to account for the fact that the matrices L and D in Eq.
�6� are distinct and cannot be reduced simultaneously to the
unit matrix by a linear transformation. Nevertheless, one
may still apply the transformation in Eqs. �9� to the matrix L
alone, in which case Eq. �6� becomes

��

�t
= �

j

�

�zj

 ��

�zj
� + ��

m

Djm�
��

�zm
� �14a�

with

�D� = A−1DÃ−1. �14b�

Multiplying both sides of Eq. �14a� by zi and integrating over
all z variables one obtains a relation similar to �13c�,

d�zi	
dt

= − � ��

�zi
� . �15�

In contrast, Eq. �14a� does not now admit a solution of the
form �13d�. On the other hand, in the limit of small � the
probability density can be expressed as �1,6�

��t� � exp
−
��t�

�
� , �16�

where to the dominant order in � the stochastic potential �
satisfies a Hamilton-Jacobi type equation,

��

�t
= �

i

 ��

�zi

��

�zi
− ��

j

Dij�
��

�zi

��

�zj
� . �17�

We thus arrive at a representation where the evolution at the
mean field level is governed by the kinetic potential � �Eq.
�15�� whereas the fluctuations in general and the transitions
between states in particular are governed by a quite different
function, the stochastic potential �. Both potentials are in
general different from the equilibrium thermodynamic poten-
tials U, although � is the transform of U under the change of
variables in �9a�.

III. MULTISTEP NUCLEATION

One instance in which the formulation outlined in the pre-
ceding section finds an interesting application pertains to
first-order transitions mediated by intermediate metastable
phases. Transitions of this kind are known to occur in a va-
riety of materials, from protein solutions to aerosols to

plasma crystals. Of special relevance for our purposes is pro-
tein crystallization, where the weakness and short-range
character of the attractive part of the interactions favors the
existence of a long-living metastable phase in the form of a
high-concentration liquid. This phase tends to enhance sig-
nificantly, under certain conditions, the rate of nucleation of
crystals �7–9�. A number of studies of the above nonstandard,
two-step nucleation problem, devoted to the construction of
the free energy landscape and the computation of the associ-
ated activation barriers, have been reported �10�. Here we
focus on the kinetic aspects of the process and, in particular,
on the role of the kinetic potential � and its relationship with
the free energy. For this purpose nucleation is formulated as
the dynamics of a set of two order parameters, density x1 and
crystallinity �structure� x2, evolving in an effective force field
provided by the first part of Eq. �2� and subjected to thermal
fluctuations in the form of Gaussian white noise �9�,

dx1

dt
= − L1

�U

�x1
− L

�U

�x2
+ F1�t� ,

dx2

dt
= − L

�U

�x1
− L2

�U

�x2
+ F2�t� . �18�

We stress that in the absence of the intermediate phase Eqs.
�18� collapse into a single equation for a unique order pa-
rameter, which can be cast straightforwardly in a variational
form.

Switching to the Fokker-Planck description and assuming
that the fluctuation-dissipation theorem remains valid �Eq.
�7� with n=2� we seek for a congruent transformation �11�
diagonalizing L with a matrix A of the form Aii=ai, Aij
=Aji=a. Upon carrying out the algebra one obtains

a1 =
L1 	 �L1L2 − L2

L
a, a2 =

L2 	 �L1L2 − L2

L
a

�19a�

and the Fokker-Planck equation in the z1,z2 variables,

��

�t
=

�L1L2 − L2L2

a2�L1 + L2 + 2�L1L2 − L2�

�� �

�z1

��

�z1
� +

�

�z2

��

�z2
� + �
 �2�

�z1
2 +

�2�

�z2
2�� .

�19b�

Notice that the argument in the square root is positive, owing
to the positive definiteness of the matrix L. This relation can
be further reduced to the form of Eq. �12� by rescaling the
variables z1,z2 or, more straightforwardly, the time,

t = 

a2�L1 + L2 + 2�L1L2 − L2�

L2�L1L2 − L2
, �19c�

yielding
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��

�

=

�

�z1

��

�z1
� +

�

�z2

��

�z2
� + �
 �2�

�z1
2 +

�2�

�z2
2� . �20�

In the context of the two-step nucleation considered in the
present section, the free energy U possesses three minima
located on the dilute and dense fluid phases I and II, and on
the solid phase III. Now, from Eq. �9c�, one has

�U

�xi
= �

k=1

2

Ãik
−1��

�zk
,

�2U

�xi � xj
= �

k,�=1

2

Ãik
−1A�j

−1 �2�

�zk � z�

. �21�

The first of these relations implies that the extrema of U
transform into extrema of �, since the matrix A is nonsingu-
lar. The second relation implies that the Hessians of U and �
�in their respective variables� are related by the congruent
transformation used to reduce L to the unit matrix which, by
construction, preserves positivity. The nature of the extrema
of U is thus not affected in the evolution in terms of the
transformed variables. In short, at the level of Eqs. �19� and
�20�, the nucleation of crystals of the solid phase is reflected
by fluctuation-induced transitions removing the system, ini-
tially located in a minimum associated with the fluid phase,
toward a minimum associated with the solid phase. In a sys-
tem whose dynamics is driven by a potential � as in Eq. �20�
and in the limit of small � �as is the case in situations of
interest�, the characteristic rate of these transitions is given
by an extension of the classical Kramers theory �9,11,12�,
leading to �upon switching back to the original time units�

k =
1

2�

 �u

+

��u
−�
�1/2

��s1�s2�1/2 L2�L1L2 − L2

a2�L1 + L2 + 2�L1L2 − L2�

�exp
−
�

�
� . �22�

Here �s1 and �s2 are the eigenvalues of the Hessian matrix of
� at the stable state of reference. As for �u

	 they are, respec-
tively, the unstable and stable eigenvalues of this matrix
evaluated at the transition state connecting the above state to
one of the other stable states available. This transition state is
known to correspond to a saddle point of the dynamical sys-
tem �z1 z2� in the mean field limit. Finally � is the potential
barrier—the difference between the values of � at the tran-
sition and at the stable reference states. Now, by virtue of Eq.
�9c� the potential barriers in the description in terms of U and
� are bound to be equal. In contrast, the preexponential fac-
tors in Eq. �22� contain kinetic coefficients beyond the Hes-
sian of U. We thus arrive at the conclusion that the barriers
for nucleation are those given by the free energy, but the
overall nucleation rate depends �weakly� on the properties of
the kinetic potential � through the preexponential factors in
Eq. �22�. The situation is of course entirely different when
the conditions of validity of the fluctuation-dissipation rela-
tionship are not met, in which case nucleation barriers would
be governed by the stochastic potential � �Eq. �17�� and thus
take quite different values from the free energy barriers.

An interesting question from the standpoint of irreversible
thermodynamics is whether the processes associated with the
density and crystallinity �structure� fields can be thermody-
namically coupled, as implied in Eq. �18� by the presence of
the off-diagonal element L of the Onsager matrix. Now den-
sity is a true scalar whereas structure is accounted for by a
tensor. At first sight, in an isotropic medium, this would rule
out a thermodynamic coupling on the grounds of the Curie
symmetry principle �3�. On the other hand a tensor T can be
split in the following way:

T =
1

3
I tr T + T�a� + T�s�, �23�

where I is the unit tensor, tr T the trace of T which is a scalar,
T�a� its antisymmetric part which can alternatively be viewed
as an axial �“pseudo”� vector, and T�s� its symmetric traceless
part which can alternatively be viewed as a polar �“true”�
vector. Clearly, then, the density field x1 can legitimately be
coupled to the first part of the decomposition in Eq. �23� or,
alternatively, to any other structure-related quantity x2 of sca-
lar nature such as the first coefficient of a Fourier series
expansion of the solid phase density. The terms in L at the
level of Eq. �18� stand, precisely, for this type of coupling.
Notice that even in the absence of a nondiagonal term L in
this equation, x1 and x2 would still be coupled kinetically,
through the x1 and x2 dependence of the potential.

IV. CHEMICAL REACTIONS INVOLVING TWO OR MORE
INTERMEDIATES

Chemical reactions constitute another important class of
phenomena where the questions of coupling between vari-
ables, detailed balance, and nonequilibrum constraints are
prominent. In this section we apply the procedure outlined in
Sec. II in a reaction scheme describing the conversion of an
initial reactant A to a final product B via the intermediates
X1 , . . . ,Xn. Since all interesting aspects of the problem are
already apparent when n=2, we shall in fact limit ourselves
to

A�
k−1

k1

X1�
k−2

k2

X2�
k−3

k3

B . �24�

This scheme can also be viewed as a “chemical analog” of
the two-step nucleation considered in Sec. III, A and B being
the analogs of the dilute fluid and solid phases, respectively.
It will be assumed that there is no clearcut time scale sepa-
ration in the evolution equations of X1 and X2 such as occurs
for instance in the vicinity of a bifurcation point, allowing
for the reduction of the dynamics to a single “normal form”
equation, which can always be written in a variational form
�13�. As an additional simplification we shall consider only
first-order kinetics, since our aim is primarily to bring out the
thermodynamic trends underlying the evolution.

A. Mean field analysis

The rate equations corresponding to scheme �24� admit a
single steady state solution �we use the same symbol to de-
note a reactant and its concentration�
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X1s =
1

k−1k−2 + k−1k3 + k2k3
�k1�k−2 + k3�A + k−2k−3B� ,

�25a�

X2s =
1

k−1k−2 + k−1k3 + k2k3
�k1k2A + k3�k−1 + k2�B� .

�25b�

In the limit where the system operates around the state of
thermodynamic equilibrium, the property of detailed balance
�which in the presence of fluctuations would also guarantee
the validity of the fluctuation-dissipation relationship; see be-
low� implies that in each of the three independent reactions
�24� the rates of the direct and inverse steps counteract each
other. This requires that the concentrations A and B be linked
by


B

A
�

eq
=

k1k2k3

k−1k−2k−3
, �26a�

in which case Eqs. �25� collapse to

X1s � X1eq =
k1A

k−1
, X2s � X2eq =

k−3B

k3
, �26b�

with

k2X1eq = k−2X2eq. �26c�

We turn next to the time evolution. Introducing the excess
variables x1=X1−X1s, x2=X2−X2s, one obtains in the mean
field limit,

dx1

dt
= − �k−1 + k2�x1 + k−2x2 = v1,

dx2

dt
= k2x1 − �k−2 + k3�x2 = v2. �27�

To cast these equations in the form of the mean field limit of
Eq. �2�, one needs to identify the appropriate fluxes and their
conjugate thermodynamic forces. This has to be done by
appealing to the bilinear form of the entropy production,
which for scheme �24� becomes �3,4�

� = w1��A − �X1
� + w2��X1

− �X2
� + w3��X2

− �B� ,

� being the chemical potential and wi the rates of the three
reactions, w1=k1A−k−1X1, w2=k2X1−k−2X2, and w3=k3X2
−k−3B. Adding and subtracting the values of the chemical
potentials at the reference state �25� �or �26� in the equilib-
rium limit� and switching to the excess variables x1 and x2,
one obtains

� = w1��A − �X1s� + ��X1s − �X1
��w1 − w2�

+ ��X2s − �X2
��w2 − w3� + w3��X2s − �B� . �28�

Now w1−w2 and w2−w3 are �in the excess variables� nothing
but the rates dx1 /dt=v1 and dx2 /dt=v2 �Eqs. �27��. When
viewed as thermodynamic fluxes these quantities admit then,
according to Eq. �28�, �X1s−�X1

and �X2s−�X2
as conjugate

thermodynamic forces. In the limit of an ideal system, these
differences reduce to the dominant order in x1 and x2 to
−x1 /X1s and −x2 /X2s, respectively. This suggests rewriting
Eqs. �27� as

dx1

dt
= �k−1 + k2�X1s

− x1

X1s
− k−2X2s

− x2

X2s
= v1,

dx2

dt
= − k2X1s

− x1

X1s
+ �k−2 + k3�X2s

− x2

X2s
= v2, �29�

where X1s and X2s are given by Eqs. �25�.
These relations have the same structure as the determin-

istic part of Eqs. �2�,


v1

v2
� = − L ·

�U

�x
, �30a�

where the thermodynamic potential U and the matrix L are,
respectively,

U =
x1

2

2X1s
+

x2
2

2X2s
, �30b�

L = 
�k−1 + k2�X1s − k−2X2s

− k2X1s �k−2 + k3�X2s
� . �30c�

If in addition detailed balance holds �Eq. �26c��, the matrix L
becomes symmetric, as should be expected from the Onsager
reciprocity relations. In this limit the potential U is still given
by Eq. �30a�, except that X1s and X2s stand for the equilib-
rium concentrations �Eqs. �26b��. In other words, at the level
of U, nonequilibrium constraints are manifested entirely
through the values of the steady state concentrations, the
structure of U itself being left the same as in equilibrium.
This “local equilibrium” property is a consequence of the
linearity of scheme �24�.

B. Fokker-Planck equation and fluctuation-dissipation relation

We turn next to the properties of the fluctuations, gener-
ated by the second term in the right-hand side of Eq. �2�.
Since chemical reactions belong to the class of jump pro-
cesses, the fundamental probabilistic description of a system
like that in Eq. �24� is afforded by the master equation,

dP�X1,X2�
dt

= �
X1�,X2�

�
r=1

3

�Wr�X1�,X2� → X1,X2�P�X1�,X2�,t�

− Wr�X1,X2 → X1�,X2��P�X1,X2,t�� , �31�

where Wr represents the probability per unit time of a tran-
sition between states X1, X2, and the states X1� and X2� con-
nected to it by reaction step r. Expanding Eq. �31� around the
reference state �Eqs. �25�� one obtains, in the limit of a large
system, a Fokker-Planck equation �Eq. �6�� for the probabil-
ity density P�x1 ,x2 , t� of the continuous variables x1 and x2 in
which the drift part is given by Eqs. �30� and the diffusion
matrix Dij is given by the matrix of the second moments of
the transition probabilities Wr �1,5�. One obtains after a
straightforward calculation
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D11 =
�

2
�k1A + �k−1 + k2�X1s + k−2X2s� ,

D22 =
�

2
�k2X1s + �k−2 + k3�X2s + k−3B� ,

D12 = D21 = −
�

2
�k2X1s + k−2X2s� , �32�

where � is the inverse of the system size. Comparing Eqs.
�32� and �30c�, one sees that the matrices L and D are dis-
tinct when X1s and X2s are evaluated in the presence of non-
equilibrium constraints �Eqs. �25�� but become identical �up
to an � factor� in the limit where detailed balance holds �Eqs.
�26��. We here have a concrete illustration of the repercus-
sions of the fluctuation-dissipation relation, as discussed in
Sec. II.

C. Thermodynamic, kinetic, and stochastic potentials

Let us consider in some detail the case where detailed
balance holds. Utilizing Eqs. �26� one may reduce the ele-
ments of the diffusion matrix �Eq. �32�� to

D11 = ��k−1 + k2�X1eq,

D22 = ��k−2 + k3�X2eq,

D12 = D21 = − �k−2X2eq = − �k2X1eq. �33�

The Fokker-Planck equation, which in the presence of de-
tailed balance has a structure given by Eq. �7�, takes the form
�see also Eq. �29��

�P

�t
=

�

�x1
�
− �k−1 + k2�X1eq

− x1

X1eq
+ k−2X2eq

− x2

X2eq
�P

+ ��k−1 + k2�X1eq
�P

�x1
− �k−2X2eq

�P

�x2
�

+
�

�x2
�
k2X1eq

− x1

X1eq
− �k−2 + k3�X2eq

− x2

X2eq
�P

+ ��k−2 + k3�X2eq
�P

�x2
− �k2X1eq

�P

�x1
� , �34�

displaying explicitly the proportionality �with the single fac-
tor �� between the elements of the matrices L and D. It is
now a simple matter to check that Eq. �34� admits a solution
of the form �7� where U is given by Eq. �30b� evaluated at
the equilibrium values of X1s and X2s,

P�x1,x2� = �2��X1eqX2eq�−1/2 exp�−
1

�

 x1

2

2X1eq
+

x2
2

2X2eq
�� .

�35�

Now the exponent in Eq. �35� is nothing but the excess free
energy of an ideal two-component system around its equilib-
rium value, which is in turn the thermodynamic potential of
a system at constant temperature and volume. We thus see

that the potential involved in the deterministic part of the
evolution in the sense of Eq. �30a�, and the one generating
the statistical properties of the system—referred to in Sec. II
as the stochastic potential—are identical. Still, the determin-
istic equations are not driven by the potential in question,
since the velocity vector is not the gradient of a scalar po-
tential. To achieve this further reduction, we resort again to a
congruent transformation diagonalizing L �Eq. �30c� with Xis
replaced by Xi eq�. Choosing a matrix A of the form Aii=ai,
Aij =Aji=a and proceeding as in Sec. III, we obtain

a1

a
= 1 + r1 + �r1 + r2 + r1r2,

a2

a
= 1 + r2 + �r1 + r2 + r1r2,

�36a�

where r1 and r2 are the ratios of the rate constants for the two
pathways of depletion of X1 and X2, respectively,

r1 =
k−1

k2
, r2 =

k3

k−2
. �36b�

Switching from the �x1,x2� to �z1,z2� variables according to
Eqs. �9�, we arrive then at a description in which, similarly to
Eq. �20�, the full dynamics is generated entirely by a kinetic
potential � linked to the thermodynamic potential U by Eq.
�9c�,

�

a2 = � 1

2X1eq

a1

a
�2

+
1

2X2eq
�z1

2 + � 1

2X1eq
+

1

2X2eq

a2

a
�2�z2

2

+ 
 1

X1eq

a1

a
+

1

X2eq

a2

a
�z1z2, �37�

where a merely plays the role of a scaling factor. Contrary to
the thermodynamic potential, this quantity displays a �ki-
netic� coupling between the two new variables, as well as
coefficients depending on the rate constants. Theses coeffi-
cients cannot be reduced to equilibrium quantities like equi-
librium constants, since the ratios r1 and r2 involve rate con-
stants associated with two different reactions.

We finally turn to the case where the system is subjected
to permanent nonequilibrium constraints compromising the
validity of detailed balance. The Fokker-Planck equation has
now the general structure of Eq. �6� in which the matrices L
and D are given by Eqs. �30c� and �32� with Xis evaluated at
the nonequilibrium steady state �Eq. �25��. Nevertheless, as
can be checked straightforwardly, it still admits a solution of
the form of Eq. �35� except that Xi eq are replaced by their
nonequilibrium counterparts Xis. The stochastic potential �in
the terminology of Sec. II� featured in this solution,

� =
x1

2

2X1s
+

x2
2

2X2s
, �38�

is identical to the potential U in Eq. �30b� featured in the
deterministic part of the evolution, thereby illustrating once
again the local equilibrium property alluded to at the end of
Sec. IV A. Actually this property holds true for time-
dependent solutions as well and for all times, provided that
x1 and x2 are initially uncorrelated. We stress that these
strong properties are secured by the linearity of the reaction
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scheme �14�. In the presence of nonlinear steps, U and �
will be different and one will have to resort to Eq. �17� to
account fully for the probabilistic properties of the system.

Interestingly, a kinetic potential generating the determin-
istic evolution can still be constructed. For an asymmetric L
matrix, the transformation of variables involved in its con-
struction can no longer be a congruent transformation since it
would then be noninvertible. Rather, one should resort to a
similarity transformation diagonalizing the matrix of coeffi-
cients in Eq. �27� or �29� which is always legitimate as long
as the eigenvalues of the matrix are distinct. On the other
hand, under the transformation of variables necessary to cast
the deterministic part of the evolution in a variational form,
the diffusion part of the Fokker-Planck equation will keep an
anisotropic structure similarly to Eq. �14a�. This entails that
the kinetic potential will no longer determine entirely the
probabilistic properties of the system.

V. CONCLUSIONS

It has long been known that, in its most general setting,
the evolution of a multivariate system subjected to nonequi-
librium constraints cannot be cast in a variational form �4�.
In the present work we have identified conditions under
which this general trend can be overruled and illustrated
them on two classes of phenomena: phase transitions in the
presence of intermediate metastable phases and chemical re-
actions giving rise to two or more intermediate species.
Much of the work dealt with nonlinear systems in which the
thermodynamic fluxes and forces are linked by a symmetric
positive definite Onsager matrix and the random forces sat-
isfy a fluctuation-dissipation relation. For such systems a ki-
netic potential generating both the deterministic part of the
evolution and the probability distribution in an appropriate
set of variables has been derived and compared to the ther-
modynamic potential descriptive of the equilibrium state.
When detailed balance does not hold, a kinetic potential may
still exist insofar as the deterministic �mean field� part of the
evolution is concerned. Typically, however, the fluctuations
will not be generated by this potential but, rather, by a sto-
chastic potential satisfying an equation of the form of �17�.

Casting the evolution in the form of Eq. �4� or �13� as
derived in our work is of special interest when studying
fluctuation-induced transitions between states, as it provides
the basis of a straightforward generalization of Kramers’
theory to multivariate systems �11,12�. We stress that the
variational property expressed by these equations is different
from the one explored by, among others, Graham and Tel
�15� �see also Ref. �5�, Chap. 6�. In this latter work the drift
term of the Fokker-Planck equation is taken to be the sum of
a contribution similar to the first term of the right-hand side

of Eqs. �2�, plus an extra term required to be orthogonal to
the gradient of the potential U.

Our results clarify further the limits beyond which a de-
scription of near-equilibrium states in terms of thermody-
namic potentials like the free energy needs to be replaced by
one exhibiting different types of state function. Since dissi-
pation is the most ubiquitous signature of nonequilibrium, a
natural question is whether these latter functions—referred to
throughout as kinetic potentials—are related to the entropy
production, which measures the amount of dissipation re-
leased in the system. The answer is negative, as can be seen
already in the first-order reaction scheme of Eq. �24�. Utiliz-
ing Eq. �28� and switching to excess variables around the
reference state, one obtains straightforwardly the following
expression for the excess entropy production:

1

2
�2� =

k−1 + k2

X1s
x1

2 +
k3 + k−2

X2s
x2

2 − 
 k2

X2s
+

k−2

X1s
�x1x2.

�39�

Comparing with expression �30b� for the �excess� thermody-
namic potential U and keeping in mind that the kinetic po-
tential is the transform of U upon the congruent transforma-
tion of Eq. �36�, we conclude that the excess entropy
production in the new variables is different from the kinetic
potential. Nonlinearities can only accentuate this difference,
since the “kinetic” nonlinearities appearing in the rate equa-
tions are generally different from the “thermodynamic” ones,
as manifested at the level of the entropy production.

In the light of the above established limitations of the
state functions of traditional thermodynamics, a natural ex-
tension of this work would be to seek for a generalized ther-
modynamic formalism built on the kinetic and the stochastic
potentials. It would also be of interest to reconsider the ques-
tions raised herein from the standpoint of fluctuation theo-
rems and large-deviation results reported in the recent litera-
ture �16�. An interesting step in this direction, suggesting
how traditional thermodynamics needs to be extended to ac-
count for some key properties of nonequilibrium states, is
described in Ref. �17�.

Finally, yet another direction in the search for a varia-
tional formulation finds its origin in the maximum entropy
principle �18�. Some interesting aspects have been explored
recently in the literature �19�, but the whole approach is dif-
ferent in spirit from and beyond the scope of the present
work.
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